
481 

Higher approximations in boundary-layer theory 
Part 2. Application to leading edges 

By MILTON VAN DYKE 
Department of Aeronautics and Astronautics, Stanford University 

(Received 26 April 1962 and in revised form 16 August 1962) 

The general analysis of Part 1 is applied to the calculation of the second-order 
viscous and thermal boundary layers for the axisymmetric stagnation point, 
unsymmetric plane stagnation point, and cusped leading edge a t  ideal incidence. 
The second-order effect upon heat transfer is found usually to be of the order of 
one-third of that for skin friction. 

1. Introduction 
A systematic procedure was developed in part 1 (Van Dyke 1962) for improving 

upon Prandtl's boundary-layer theory. The second approximation was studied 
in detail for steady laminar flow of a constant-property fluid past an analytic 
semi-infinite plane or axisymmetric body free of separation. Five additive second- 
order effects were identified. 

Here that analysis is illustrated by application to specific problems. It is 
natural to consider first the Falkner-Skan family of self-similar flows, which 
require numerical integration of only ordinary differential equations. We choose 
the three most useful cases, corresponding to the plane and axisymmetric stagna- 
tion point and the flat plate (the first-order solutions being associated with the 
names of Hiemenz, Homann, and Blasius). Each of these can be taken as the 
basis of a Blasius series to extend the solution downstream over a body of general 
shape, and we adopt that point of view, which is in fact essential in the second 
approximation for unsymmetric plane flow. The body is taken to be either in- 
sulated or at a prescribed temperature (which may vary with distance). 

Reference to an equation in Part 1 is made by giving its number preceded by 
the Roman numeral I. 

2. Axisymmetric stagnation point 
Consider axisymmetric flow past an analytic body whose nose radius L is 

taken as the unit of length. Then the (convex) curvature, radius, and angle of 

its surface are given by K ( S )  = 1 + O ( S 2 ) ,  (2 . la)  
To(S)  = s - is3 + 0(85 ) ,  (2.1 b)  

(2 . lc)  

Suppose that the problem (I, 3.11) for the basic inviscid flow has been solved 
subject to appropriate upstream conditions. From that solution the surface 
speed (referred to some reference speed U,) can be found as 

cos o ( S )  = s + o(S3). 

u,(s,o) = u,,~+o(S3). (2.2) 
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2.1. First-order velocity and temperature 

We summarize the first-order theory, which is given in detail by Frossling ( 1  940) 
and Schlichting (1960).  The first-order stream function of (I, 4.8a)  is expanded 
in the Blasius series 

1C.l(S, N )  = (9Ul1)*S2[fl(7) + 0(s2)1, (2 .3a )  

where 7 = (2Ull)4 N .  (3 .3b)  

Here and in the subsequent examples we normalize the independent and depen- 
dent variables according to the usual Falkner-Skan notation, because it leads 
to the simplest forms of the equations, particularly in the second approximation. 

Substituting into the first-order problem (I, 4.9) for the velocity field gives 

2f’: + 2f1 f; -f;2 = - 1, 

fl(0) = f ; ( o )  = 0, f;(a) = 1 .  

Numerical integration yields 
f;(O) = 0.927680 

(2 .4a )  

(2.4b) 

( 2 . 5 ~ )  

(of which Frossling 1940 gives the first four figures), and for large 7 

fl(7) 7-Pl, w = 0.80455. (2 .5b)  

In the energy equation (I, 4.10a)  the dissipative terms are O(s2). Hence an 
insulated body has no thermal boundary layer near the stagnation point, the 
surface temperature being the free-stream stagnation temperature on the axis, 
Hl(0). On the other hand, suppose that the surface temperature (referred to some 
reference temperature T,) is prescribed as 

Then expanding the temperature in a Blasius series as 

tl(% N )  = HAO) + K 7 0 -  Hl(0)I sl(7) + 0(s2) (2.7 1 

(T-lg;+flg; = 0, g1(0) = 1 ,  g,(oo) = 0. (2 .8)  

and substituting into ( I ,  4.10) gives 

We consider values of the Prandtl number (T of 1.0 (in which case g1 is known to 
be given in terms of fl by quadratures) and 0.7. Numerical integration (con- 
firmed to four figures by Frossling 1940) yields 

= 0.53898, (T = 1.0, 

= 0.47050, (T = 0.7. 

2.2. Second-order velocity 

Four of the five second-order effects are local, and can be calculated for the 
stagnation point independent of the subsequent flow. However, the displace- 
ment speed can be found only by calculating the first-order boundary layer over 
the entire body, and then solving the second-order outer problem (1 ,3 .12) ,  
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(I, 3.27 b) for the flow due to displacement thickness. Suppose that this has been 
done, giving at the surface the second-order increment 

uz(s, 0) = uZls + op). (2.10) 

We expand the second-order stream function in a Blasius series like that (2.3) 
for the first approximation, which reduces to universal functions if taken in 
the form 

)Ifi(st m = s2[F1ct.17) + (2Ull)-1B;(0) Fl,(T) + (2U1d-4 ~ l ~ ~ ( ~ ) I +  W4)* (2.111 

Here Flc, Flu, and Fld represent the effects of curvature (longitudinal and trans- 
verse combined), external vorticity, and displacement speed, where B;( 0) is the 
dimensionless value of wlr on the axis, w being the vorticity in the oncoming 
stream. 

The integral appearing in the momentum equation (I, 4.11 a) can be evaluated 
using the fact that the general Falkner-Skan equation 

f”’+ff”+/3(l-f‘2) = 0, ( 2 . 2 2 4  

(1-tB)f‘Z = (f”+ff’+Py)‘. (2.12b) 

of which ( 2 . 4 ~ )  is the special case P = +, can be written 

Thus the second-order problem (I, 4.11) becomes, using (2.4) 

K c  +fi% -f;G +f rF1, = q(f1f’; - + B) + $(f; +fJ; + P I )  ; (2 .134  

Fl,(0) = FiC(O) = 0, F i C ( a )  = 0;  (2.13b) 

FrV +f,FiV - f +f;F1, = -PI, ( 2 . 1 4 ~ )  

Flu(0) = F;,(O) = 0 ,  F;,(oo) = 1; (2.14 b) 
Frd++f1Fid-f;Fid+fI;Fld = -1 ,  ( 2 . 1 5 ~ )  

F1d(O) = Fid(0) = 0 ,  P i d ( a )  = 1.  (2.156) 

The solution of the displacement-speed problem (2.15) is given in terms of the 

(2.16) 
first-order function fl by 

N. Rott has pointed out to the author that this relationship, like others to be 
encountered later, is a straightforward consequence of the fact that the dis- 
placement speed is locally similar to the basic inviscid surface speed. The 
problems for curvature (2.13) and vorticity (2.14) have been integrated numeric- 
ally, with the result that 

F l d ( T )  = i ( f 1 - k  rf;)’ 

(2.17) I P ; , ( O )  = - 0-62260, 

Fi,(O) = 1.76861, 

Fid(0) = 1.39152. 

The first and third of these numbers agree (aside from a different normaliza- 
tion) with those given by Lenard (1961). The second number disagrees with that 
found by Rott & Lenard (1959), Lenard (1961), and Maslen (1962), because they 
do not include the second-order change in pressure induced upon the boundary 
layer by interaction of the displacement thickness with the external vorticity 
(of. (I, 3 . 1 4 ~ ) ) .  Thus they solve ( 2 . 1 4 ~ )  with the non-homogeneous term -P1 

31-2 
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omitted. Because a particular integral of (2.14a)  is given by &/3,(jr++rf;),  one
readily confirms that their value is P;,(O) --&3&(O) = O-64906.

Kemp (1959) has found an exact solution of the Navier-Stokes equations
that generalizes Homann’s solution to include external vorticity. For weak
vorticity it reduces to the perturbation solutions just mentioned, because Kemp
also disregards the pressure change. It can be shown that his solution is one
member of a family of exact solutions, another of which reduces to the present
solution that includes the pressure change.

Thus previous investigators have calculated only the kinematic effects of
external vorticity. As discussed in Part 1, this is acceptable provided the re-
maining effect is included by considering displacement pressure rather than
displacement speed. Lenard (1961) and Maslen (1962) have treated the effect of
displacement as well as vorticity, but they unfortunately consider displacement
speed, so that their net result is incorrect. (Lenard has corrected this matter,
taking the point of view of displacement pressure, in an appendix to the revised
version of his thesis.)

2.3. Second-order temperature

As in the first approximation, all compressibility terms (proportional to nza) in
the energy equation are O($). Hence an insulated stagnation point has no
thermal boundary layer to second order. If instead the surface temperature is
prescribed by (2.6), universal functions are obtained by writing the Blasius
series for t, as

tab, N) = P/u,# KN - KW
x [G,,(r) + WLYWO)  G,,(r) + P%-9 cr,,G,,(r)l + WT (2.18)

Substituting into (I4.12)  and using (2.8) and (2.16) gives

a-W;,  +fl G;, = (r/f1  - r-l - Pl;,) g;, G,,(O) = G,,(m) = 0; (2.19)

a-lG;, +fl G;= = - g;F’,, G,,(O)  = G,(oo) = 0; (2.20)

+G;, +fiG;, = - Hfi + rf;) s;, G,,(O) = G,,(co) = 0. (2.21)

The solution of the displacement-speed problem (2.2 I) is given by

Gld(V) = h;(r)* (2.22)

The other two problems have been integrated numerically. Thus

-G;,(O) = O-48296, (T = 1.0,

= o-50194, o- = 0.7;

-G;,(O) = O-42073, G = 1.0,

= 0.38270, o- = 0.7;

-G;JO) = 0.26949, B = 1.0,

= 0.23525, CT = 0.7.

(2.23)

Because he neglects the induced pressure gradient, Kemp (1959) finds for G,,
the above values plus the solution of

a-la”  +fiA’ = &(fr +rf;)g;, A(0) = A@) = 0. (2.24a)
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The solution is given by A = - +/l,yg;, so that his result corresponds to values of 

(2.24 b) 
0.42073 0.20391, (T = 1.0, 

0.38270 0.19343, (T = 0.7. 

- Gi,(O) of 

2.4. Skin  friction and heat transfer 
For convenience we present results in physical terms; that is, in this section 
only all symbols denote actual dimensional quantities. Substituting the pre- 
ceding results into (I, 4.13) gives for the skin friction 

7 = pdU&s[l*311938- 1*24520(v/U1,L2)* 

- 1.7686l(v/U!$ (w/r)o+ 1~96791v*Uz1/Ul1 + O(v) ]  + 0(s3). (2.25) 

Here L is the nose radius, s the actual distance from the stagnation point, and 
(w/r)o the ratio of vorticity in the oncoming stream to the radius, evaluated on 
the axis. The surface speed in the outer flow is (U,, + v*U,, + . . .) s + O(s3),  U,, 
representing the flow due to displacement thickness. The first term in (2.25) is 
Romann's result of classical boundary-layer theory, followed by the second- 
order corrections for curvature, external vorticity, and displacement speed. 

Convex curvature reduces the skin friction. External vorticity contributes 

7 Z v  = - 1*76861,~00. (2.26) 

Here the numerical factor shows that through interaction with the boundary 
layer the shear associated with external vorticity is increased 77 yo above its 
value just outside the boundary layer. Neglecting the pressure gradient associ- 
ated with external vorticity would reduce this factor to - 0.64906, which is the 
result of Rott & Lenard (1959) andKemp (1959). Kemp usesa vorticityparameter 

a = - (v/2 U!l)$ (w/r)o (2.27) 

and finds as the relative correction to skin friction an average value of 1 + 0-788  
for 0 < !J < 0.6; from (2.25) the present result for small Q is 1 + 1.90648Q. 

Substituting into (I, 4.14) gives for the heat transfer to the body, in terms of 
dimensional quantities, 

(2.28) 

Here To is the stagnation temperature on the axis, and Two the temperature of 
the body at its nose. Each second-order correction has the same sign for the heat 
transfer as for the skin friction except for curvature, where the decrease due to 
longitudinal curvature is overbalanced by an increase due to transverse curv- 
ature. Except for that term, the relative effect is about one-third as great for 
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heat transfer as for skin friction. The relative correction factor for the effect of 

0.7806 
external vorticity is 

1 +(0.8134) a r = ( 0.7, l . O ~ )  (2.29) 

rather than the 1 + (0-3783 or 0.41 11) Q that results from neglecting the induced 
pressure. 

3. Plane stagnation point 
For symmetric flow the plane stagnation point is treated like the axisymmetric 

one. Asymmetry introduces novel features, however. The (dimensionless) 
inviscid surface speed has then the form 

q ( s 7  0 )  = ul,s + u12s2 + o(s3); (3-1) 

and if the radius of the body a t  the inviscid stagnation point is taken as the 
reference length L, the curvature is 

K ( S )  = 1 +O(s). (3.2) 

3.1. First-order velocity and temperature 

The Blasius-Howarth series for the first-order stream function is (Schlichting 

(3.3a) 
1960) 

where 7 = U & N .  (3.3b) 

Two terms must be kept here to find one in the second approximation. Sub- 
stituting into (I, 4.9) gives 

@l(s, N ,  = ‘zls[fl(7) + 3(UlZ/u11) sfZ(7) + o(92)1, 

f’;+flf’;-f;2 = - 1, f1(O) =f; (o )  = 0, fi(C73) = 1; (3 .44  

f’:+f1f;-3f;f;-k22f;f2 = - 1, f z ( 0 )  = f ; ( o )  = 0,  fL(00) = Q. (3.4b) 

Numerical integration yields 

f ; ( O )  = 1.232588; fl(r) N r-Pl, p1 = 0.647900;) 

fL(0) = 0.798744; ,fi(r) N Q7-Pz, p2 = 0.0270. 
(3.5) 

Again there is no thermal boundary layer near the stagnation point if the body 

(3.6) 

is insulated. If its temperature is prescribed according to 

Tw(s) = Two + T,,s + 0(s2) 

the Blasius series for temperature is (Prossling 1940) 

t,(s, N )  = Hl(0) + [Two - H,(O)I bl(7) + (Ulz/ull) s 92(7)1 + Twls + 0(s2)7 (3.7 1 

where substituting into (I, 4.10) gives 

rlg’;+.flg; = 0,  Sl(0) = 1, g1(w) = 0;  (3 .8~)  

e7;+f1g;-f;g2 = - 6fZg;, 92(0) = g,@) = 0 ;  (3.8b) 

~-lk;+f1kL-f;k2 = 0, k2(0) = 1, k2(W) = 0. (3 .8~)  
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For CT = 0.7, numerical integration yields 

-g;(O) = 0.495867, 

-gi(O) = 0.362253, 

-k;(O) = 0.708981. 
(3.9) 

3.2. Xecond-order velocity 
Suppose that the flow due to displacement thickness has been calculated to find 

&(s, 0 )  = us, + u,,s + 0(s2). (3.10) 

The second-order stream function is then reduced to universal functions by setting 

@2('7 N ,  = sFlc(r) + ' ,lB;(O) [FOu(r) + '(q2lUl1) sF1v(7)1 f- ufisu20FOd(r) 

+ Uii*s[~2lFld(r) + 2 ( u 1 2 U 2 0 / ~ 1 1 ) ~ ~ ~ ( ~ ) 1  +W2). (3.11) 

If the flow is symmetric, only odd powers of s appear (and moreover the external- 
vorticity parameter B;( 0) vanishes), but asymmetry introduces terms of order 
unity associated with external vorticity and displacement speed. Substituting 
into (I, 4.11) gives for these leading terms 

F&+flF,",-f;F& = -pl, F&,(O) = FL(0)  = 0, P~,,(oo) = 1; (3.12) 

..F&+flF&-f;F& = - 1, &(0) = F&(O) = 0, F&(co) = 1. (3.13) 

The solution of the displacement-speed problem (3.13) is given by 

FOd(7) =f1(r) (3.14) 

and this has a simple interpretation. The inviscid surface speed is, from (I, 3.2), 
(3.1), and (3.10), 

U1(s, 0) + R-)U,(s, 0 )  + . . . = R-*U2, + S( Ull + R-4 U2, + . . . ) + O(s2) (3.15) 

so that the displacement effect of the first-order boundary layer shifts the 
stagnation point from s = 0 to s = - R-*UsOIUll + . . . . The. second-order term 
Pod simply serves to shift the origin of the Hiemenz solution to that point. 
Numerical integration of the equation (3.12) for Fm is simplified by the fact that 
a particular integral is given by Plf1(r). Thus 

Fi,,(O) = 1.40652, 

F&(O) = 1.232588. 
(3.16) 

The vorticity problem (3.12) was first solved by Stuart (1959), who showed 
that (like Kemp's solution for the axisymmetric problem) it in fact represents 
an exact solution of the Navier-Stokes equations. Stuart actually solves the 
homogeneous equation, which from our point of view gives only the kinematic 
effect of external vorticity. However, he noted that this solution can be general- 
ized by shifting the stagnation point; this re-introduces b1 into the equation, 
and because Plfl is then a particular integral, one reproduces his value of g'(0) 
as P&,(O) -plf:(O) = 0.60793. 
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For the terms proportional to s the problems are

E;“,‘+f,FFW%+f;F,,  = rl(fif’;-f;2+2)+/L

F,,(O) = F;;,(O) = 0, FB(co) = - 1; (3.17)

FL+f,F;,-%F;,+f;G,  =f;F&,-fiFi’,,-A,

Fl,(0)  = F&(O) = F;,(w) = 0; (3.18)

F~~+fiEIld-2f;Fld+f;F~d  = -2, Fld(0) = Eid(0) = 0, F&(m) = 1; (3.19)

E:“d+fiE;d-2f;E;d+f;Eld  = 3Cf;f;.-f;fi)--l,

El&O) = Eid(0) = E&o) = 0. (3.20)

The solutions of (3.19) and (3.20) are given by

E;,trl)  = B(fi+rf;), (3.21a)

J%(r) = 3f2 - +Afl + vf a. (3.21 b)

The other two problems have been solved numerically, with the result that

F;,(O)  = - 1.913255,

Flu(O) = - 0.06299,

F;JO)  = 1.848882,
1

(3.22)

Eid(0) = 0.547350.

The first and third of these agree to five figures with the values found by Lenard
(1961).

3.3. Second-order temperature

Compressibility effects in the energy equation are O(s2) for symmetric flow and
O(s) for unsymmetric flow, but in any case negligible near the stagnation point.
Hence an insulated body has no thermal boundary layer there to second order.
For a body with temperature prescribed by (3.6), set

t,h N) = Gi+%, - f4(0)1  C~h) + (u,,/G) B;(O)  G,(r)

+ UtiJ v,,G,,(r)  + -Vi2 4, G&C&)1
+~,lU,l[:U,-,tB;tO)Kl,tr)+  u,,G4r)l+O(~). (3.23)

Substituting into (I, 4.12) gives the problems

c+C;, + fi G;c = (rlfi  - c-l - Flc) g;, G,,(O) = Q&4 = 0; (3.24)

+G;n -t fi G;, = g2 F&, - Sg; Fl;,, G,(O) = G,,W) = 0; (3.25)

o--V, +fiG;cz  = - i(fi + d;) g;, G,,(O) = G&Q) = 0; (3.26)

c+J;,+f1JhI  =f;g2+(fi+rlf;-6f2)g;, J&O) = J&z(~) = 0; (3.27)

c+K’;,  + fl Kiv = k, F;,, Klv(0)  = K,,(a) = 0; (3.28)

rlK,;d+flK;d  = f;k2, K&O) = K,,(a) = 0. (3.29)
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Only (3.24), (3.25), and (3.28) need be integrated numerically, the displacement- 
speed functions being given by 

Gld(7) = 4w;, (3.30) 
J l d ( 7 )  = 92-v9;> (3.31) 

Kid(?) = k,-91. (3.32) 

For t~ = 0.7, numerical values are 

(3.33) 
G;,(O) = 0.12811, G;,(O) = 0.48449, 

G ; d ( O )  = -0'2479336, J ; d ( O )  = 0.133614, 
K;,(O) = -0.31083, K ; d ( O )  = -0.213114. 

3.4. Sk in  friction and heat transfer 

Substituting into (I, 4.13) shows that in unsymmetric flow the point of zero skin 
friction is shifted from the stagnation point for the basic inviscid flow to 

s = so = -R-*U,1[u2,+ 1~14111B;(O)/U~,]+O(R-~). (3.34) 

The first term is simply the shift of the stagnation point in the outer flow, due to 
the displacement speed of the boundary layer. The second term is an additional 
shift within the boundary layer resulting from external vorticity . The shear 
producing this latter shift is 

where wo is the actual (dimensional) external vorticity on the stagnation stream- 
line. The numerical factor means that through interaction with the boundary 
layer the shear associated with external vorticity is increased a t  the surface 
41 yo above its value in the free stream, compared with 77 % in axisymmetric 
flow. Neglecting the induced pressure gradient gives instead the decrease of 
39% predicted by Stuart (1959). The difference is of course that between the 
effects of displacement speed and displacement pressure. 

It is convenient to shift the origin to the point of zero skin friction by setting 
s' = s-so. Then in terms of actual dimensional quantities the skin friction is 
given by 

rv = - 1.40652,uw0, (3.35) 

r = pvaU;',s'[1.232588- 1-913255(v/Ul,L2)* + 5-8466v*ooUl2/Ufl 

+ 1*848882v*( U,,/U,, - 2U1, U20/U&) + 0 ( s f 2 ) .  (3.36) 

Here L is the nose radius, s' is the true distance from the point of zero skin 
friction, and the actual surface speed in the outer flow is 

(U,,S + ul,sz + . . .) + V*( u2,+ U,,S + . . .), 
s being measured from the stagnation point of the basic inviscid flow. The first 
term is the classical result of Hiemenz. As in axisymmetric flow, convex 
curvature reduces the skin friction. 

Substituting into (1,4.14) gives the heat transfer a t  the point of zero skin 
friction for Prandtl number 0.7, in terms of dimensional quantities, as 

q/k = (.?&/v)* (Two- q) [0*495867- 0*12811(~/U,,L~)*+ o ~ 8 9 7 8 6 v * ~ 0 ~ , / U ~ 1  
+ 0~347934~~U,,/U,, - O.495867v*U1, U,,/UZ,,] 
+ T,,,[0~49820~,/U,,- 0*495867U2,/U$] + O(V, s').  (3.37) 
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Here the actual surface temperature is (Two + T,,,,s + . . .). The corresponding 
expression a t  the inviscid stagnation point is obtained by replacing the third, 
fifth, sixth, and seventh numerical coefficients by 0.48449, - 0.133614, - 0.31083, 
and + 0.213114 respectively (and s’ by s). 

Comparing with (3.36) shows that each of the second-order corrections pro- 
portional to (Two - To) in (3.37) has the same sign as its counterpart for the skin 
friction, the relative effect being only from one-sixth to one-third as great. 

4. Cusped leading edge 
Consider a plane semi-infinite body having a cusped leading edge but other- 

wise analytic; this includes the standard problem of the semi-infinite flat plate. 
Because the leading edgeis not analytic, the formal analysis of Part 1 is not strictly 
applicable. In  fact, the inviscid velocity is generally infinite at the leading edge, 
and the actual flow presumably separates there. 

If we restrict attention to the ideal angle of attack, for which the inviscid 
velocity is finite, the flow may remain attached. Classical boundary-layer theory 
has been applied to such cases with the understanding that local violationof the 
basic assumptions causes only local failure of the solution. It appears that this 
is true also of the second approximation, whereas Goldstein’s (1960) and Imai’s 
(1957) study of the flat plate shows that it is not true of the third approximation. 

Consider either surface. The curvature, referred to some characteristic length 

(4.1) 
L, has the form 

K ( S )  = K O + O ( S ) ,  

where K~ vanishes for the flat plate. The basic inviscid surface speed has the form 

U,(s, 0 )  = u,, + O(s log s), (4.2) 

where U,, = 1 for the flat plate or whenever the value at the leading edge is chosen 
as the reference speed U,. 

4.1. First-order velocity and temperature 

Expand the first-order stream function in the Blasius series 

@I($, N )  = (2UlOS? [f,(r) + O(s logs)l, 

7 = ( Ul0/2S)* N .  where 
Substituting into (I, 4.9) gives 

(4.3a) 

(4.3b) 

This is the Prandtl-Blasius problem, free of factors of 2 that appear in most 
references, thanks to the Falkner-Skan normalization. Numerical integration 
(Howarth 1938; Shanks 1953) yields 

f’i(0) = 0.469600; f l(7) N 7-/?1, PI = 1.21677. (4.5) 

The linearity of the energy equation is exploited by dividing its solution into 
the particular integral for an insulated body plus the complementary function 
for prescribed temperature. Let the dimensionless surface temperature be 

Tw(s) = Two + O(s). (4.6) 
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Then the Blasius series for temperature is* 

q s ,  N )  = [H1(O) - +m";o] +m2U;,i1(7) 

+ [Two - H,(O) + +m2U2,,- +m2U;0i1(0)] q1(y) + O(S), (4.7) 

where the first two terms alone given the solution for the insulated body. Sub- 
stituting into (I, 4.10) gives 

u-'g;+flg; = 0, g1(0) = 1, g,(oo) = 0; (4 .8~ )  

o-li;+fli; = -f';2, i;(o) = il(oo) = 0. (1.8b) 

The solutions can be found in terms of fl, explicitly for o = 1-0 as 

s1(r) = 1-f;(7)? il(7) = +(1-L2)  (4.9) 

and otherwise by quadratures. Numerical values are 

- g ; ( O )  = 0.469600, G = 1.0,' 

= 0.41391, (T = 0.7; 

i l (0 )  = 0.50000, = 1.0, 

= 0.41786, u = 0.7. I (4.10) 

4.2. Xecond-order velocity 

Solving the problem for the flow due to displacement thickness will give 

U2(S, 0 )  = u20+o(slogs). (4.11) 

Then the second-order stream function is reduced to universal functions by 
setting 

$2(S, N )  = (2S/U,O)+ U204dr) + 2 S [ K O P 2 A 7 )  + U,lB;(O) F2,(7)1+ w. (4.12) 

Displacement speed is seen to be the dominant effect unless U,, vanishes, as it 
does for the semi-infinite plate. (For the finite plate, however, Kuo 1953 finds 
that U,, = pl/n- approximately,) Substituting into (I, 4.11) gives for displace- 
ment speed the problem 

F~d+flF;d+fFld = 0, FId(0) = 1 P i d ( O )  = 0, F ~ ~ ( c o )  = 1, (4.13) 

and for curvature and external vorticity 

G + f 1 G C  - f ;  FL + 2f ; 4 c  = rf1 f; +PI, 
P2c(0) = Fh,(O) = 0, P'~,(.o) = - 1; (4.14) 

~ ~ ~ + f 1 ~ ' ~ - f ; P ~ , + 2 f ; F 2 ,  = - p l ,  p2,(0) = Fh,(O) = 0, F'Joo) = 1. (4.15) 

Kuo (1953) points out that the solution of (4.13) is 

&(v)  = 8(fl+rf;). (4.16) 

The other problems have been integrated numerically. Thus 

F;d(O) = 0.70440, Pi,(O) = -3.3910, Fi,(O) = 3.1360. (4.17) 

* Equation (14.54) of Schlichting (1960) is incorrect; it fails to reproduce the prescribed 
surface temperature. 
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The problem (4.15) for external vorticity has been the subject of prolonged 
controversy in the case of the semi-infinite flat plate, where U2(s, 0)  vanishes so 
that there is no effect of displacement speed. Li (1955) neglected the pressure 
gradient induced by interaction of displacement and external vorticity when he 
introduced the problem, but later (1956) corrected himself. Glauert (1957) and 
Ovchinnikov (1960) deny the existence of the induced pressure, and solve (4.15) 
with the term - Bl omitted; according to Glauert's calculations this gives 0.795 
for Fi"(0). A careful study by Murray (1961) confirmed the existence of the in- 
duced pressure, yielding a value of Fi,(O) that agrees with the present one to 
within one unit in the last place. The efficiency of the technique of inner and outer 
expansions is illustrated by the fact that Murray has to calculate the third term 
of the outer expansion, which is unnecessary here. 

4.3. Second-order temperature 

For simplicity, consider only strictly incompressible flow (dropping terms of 
order m2). The second-order Blasius series for temperature is 

t2(s9 N ,  = (2U10s)3H;(o) [I2H(r) -I2H(O) G 2 H ( T ) l  + [TwO-H1(0)l 

x [(U20/7-?10) Gld(r) + (2s/U,o)+ klG2Ar)  + UGIB;(0) Gzv(r))l+ O(4,  (4.18) 

where the G's are to be omitted for the insulated body and retained for the body 
with surface temperature prescribed by (4.6). As for the velocity field, the effect 
of displacement speed has the same dependence on s as the first approximation 
(but vanishes for the semi-infinite plate), whereas the other second-order effects 
are smaller by $4. 

Substituting into (I, 4.12) givcs for displacement speed 

f l - q ,  +flG;,  = - iYfl+ rf;) s;, Gld(0) = G,,(m) = 0, (4.19) 

whose solution is 
Gld(7) = 47s; (4.20) 

and for curvature, external vorticity, and stagnation enthalpy gradient, 

a-'G~,+f1G;lC-j;G2, = (7f1--CT-1-2F2c)g;, G,,(O) = G2,(00) = 0;  

CT-'G& + f 1  G;l, -f; G2, = - 2F2,g;, GZ,(O) = G,,(m) = 0;  

(4.21) 

(4.22) 

CT-'G';, f1 G;lH - f ; GZH = 0, G ~ H ( O )  = I,  G~H(co)  = 0;  (4.23) 

fl-lT;H+flIkH-f;ISH = 0, ILH(0) = 0, I;~H(co)  = 1. (4.24) 

Numerical integration gives for CT = 0.7 

} (4.25) 
G;,(O) = -0.20696, G;l,(O) = 0.70784, Gh,(O) = -0.91117, 

G;lH(O) = -0.57402, I2H(O) = 0.86291. 

Aside from the different normalization, (4.22) agrees with equation (2.10) of 
Ovchinnikov (1960). His solution is therefore incorrect only because he usea 
an F2v calculated without including the induced pressure. 



Higher approximations in  boundary-layer theory. Part 2 493 

4.4. Skin friction, surface temperature, and heat transfer 

In  physical variables the skin friction is 

T = pC40(~U10/~)* C0.33206 + 0 ~ 4 9 8 0 9 ~ * U ~ ~ / U ~ ~  

- 3~3910(vs/U1,)* K~ - 3~1260(vs/UlO)* O ~ / U , ~ ]  + O(S*, v%), (4.26) 

where the actual surface speed in the outer flow is (V,, + v*U2, + . . .). As in the 
previous examples, convex curvature decreases the skin friction. Murphy 
(1953) has found the same trend when the curvature is singular like 5-4, although 
this is disputed by Yen & Toba (1961). 

External vorticity contributes 

T,,, = - 3.1260/~0, (4.27) 

so that again the shear is increased by interaction with the boundary layer, to 
a value a t  the surface of more than three times that just outside the boundary 
layer. Neglecting the induced pressure gradient gives instead a 20 yo reduction. 

For an insulated body with c = 0.7 the surface temperature is, in physical 

(4.28) 
variables, T,(s) = To + 1.2203(vU,,s)* (dT/dUn),  + O(s, u) ,  

where To is the stagnation temperature and ( d T / d  Un),  the external temperature 
gradient across the dividing streamline. For a positive gradient the surface tem- 
perature increases to prevent heat transfer to the body. 

The heat transfer from a body at temperature Two + O(s) with c = 0-7 is given, 
in physical variables, by 

a/k = (~,,/vs)* (Two- To) [ 0 ~ 2 9 2 6 8 + o ~ 1 4 6 3 4 ~ * ~ 2 0 / ~ 1 0  

- 0*70784( VS/ Ulo)* K, - 0.9 1 1 17 ( V S /  u,o)* Oo/ ulo] 
- 0.49533Ul0(dT/dU?%), + o(s, d).  (4.29) 

Each second-order effect has the same sign for the heat transfer as for the skin 
friction. The relative effect is always very nearly one-third as great, which may 
be taken as the second-order counterpart of Reynolds’s analogy. The reduction 
in heat transfer due to external vorticity is several times greater than that pre- 
dicted by Ovchinnikov (1960), who neglects the induced pressure gradient and 
finds the coefficient - 0-340 for c = 1.0 in place of the present - 0.91 1 for CT = 0.7. 

The coefficient multiplying the last term in (4.29) indicates that the heat 
transfer associated with an external temperature gradient is reduced at the 
surface to about half its value outside the boundary layer; the boundary layer 
tends to insulate the surface. Ovchinnikov calculates this coefficient as 0.454 
for CT = 1.0, and from the solution for c = 2.0 deduces that it varies approximately 
as ~ ~ 4 2 3 2 ;  this gives 0.493 for c = 0.7, in close agreement with the present value. 

4.5. Leading-edge drag 

The skin friction (4.26) is integrable. Integrating formally would give for the 
drag of one surface, in physical variables, 

D(s) = pU~,s[0~66411(~/U1,s)~ + 0*99617~U,, U685-4 

- 3~3910v~~/U, , -  3 ~ 1 2 6 0 ~ w ~ / ~ ~ ~ +  O(s*, d)].  (4.30a) 
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This is incorrect, because the solution is not valid near the leading edge. Imai 
(1957) has found the correct result for the semi-infinite flat plate, using a momen- 
tum control surface to avoid the region of invalidity. He shows that the above 
expression must be augmented by the constant 

Do = &?T/~~,uUU,, = 1*163pU,,. (4.30b) 

From the gross point of view of boundary-layer theory this appears to be a force 
concentrated a t  the leading edge; it must actually be the result of increasedskin 
friction in the vicinity of the leading edge, where U,,s/v = O( 1)  and the boundary- 
layer approximation is invalid. It is analogous to the leading-edge drag of in- 
compressible thin-airfoil theory (Jones & Cohen 1960). It is equal to the drag, 
in inviscid flow, of the solid parabola corresponding to the displacement thickness 
of the Blasius boundary layer. 

Kuo (1953) has calculated the second approximation for a finite flat plate, and 
obtains for the coefficient of friction drag (of both surfaces) 

C, = 1*328R-& + 4*12R-’, (4.31) 

where R is the Reynolds number based on length. This agrees remarkably well 
with experiments of Janour (1951) down to R = 10. However, the leading-edge 
drag was not considered; adding it increases the second coefficient to 6.45. On 
the other hand, the constant 4-12 was estimated as the sum of a slowly convergent 
infinite series, and a re-examination shows that it can scarcely exceed 3. These 
two corrections tend to compensate each other, so that the second coefficient is 
approximately 5.3. This result is still in reasonable agreement with the experi- 
ments. 

One might ask whether a concentrated force does not arise also from the 
trailing edge in this case. Reflexion suggests that it does, but that whereas the 
leading edge is exposed to the free-stream speed U ,  the velocities in a neigh- 
bourhood of order v /  U of the trailing edge (where the boundary-layer approxi- 
mation is invalid) are reduced by the relatively thick boundary layer to order 
R-&U. Hence the trailing-edge force is only a third-order effect. 

This work was partially supported by the Air Force Office of Scientific Research 
under Contract no. AF 49 (638)-965. 
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